歡迎光臨
每天分享高質量文章

詳記一次MySQL千萬級大表優化過程!

來自:知乎,作者:互聯網編程
鏈接:https://www.zhihu.com/question/19719997/answer/549041957

問題概述

使用阿裡雲rds for MySQL資料庫(就是MySQL5.6版本),有個用戶上網記錄表6個月的資料量近2000萬,保留最近一年的資料量達到4000萬,查詢速度極慢,日常卡死。嚴重影響業務。

問題前提:老系統,當時設計系統的人大概是大學沒畢業,表設計和SQL陳述句寫的不僅僅是垃圾,簡直無法直視。原開發人員都已離職,到我來維護,這就是傳說中的維護不了就跑路,然後我就是掉坑的那個!!!

我嘗試解決該問題,so,有個這個日誌。

方案概述

  • 方案一:優化現有MySQL資料庫。優點:不影響現有業務,源程式不需要修改代碼,成本最低。缺點:有優化瓶頸,資料量過億就玩完了。

  • 方案二:升級資料庫型別,換一種100%兼容MySQL的資料庫。優點:不影響現有業務,源程式不需要修改代碼,你幾乎不需要做任何操作就能提升資料庫性能,缺點:多花錢

  • 方案三:一步到位,大資料解決方案,更換newSQL/noSQL資料庫。優點:沒有資料容量瓶頸,缺點:需要修改源程式代碼,影響業務,總成本最高。

以上三種方案,按順序使用即可,資料量在億級別一下的沒必要換noSQL,開發成本太高。三種方案我都試了一遍,而且都形成了落地解決方案。該過程心中慰問跑路的那幾個開發者一萬遍 🙂

方案一詳細說明:優化現有MySQL資料庫

跟阿裡雲資料庫大佬電話溝通 and Google解決方案 and 問群里大佬,總結如下(都是精華):

  1. 資料庫設計和表創建時就要考慮性能

  2. SQL的編寫需要註意優化

  3. 分割槽

  4. 分表

  5. 分庫

1、資料庫設計和表創建時就要考慮性能

MySQL資料庫本身高度靈活,造成性能不足,嚴重依賴開發人員能力。也就是說開發人員能力高,則MySQL性能高。這也是很多關係型資料庫的通病,所以公司的dba通常工資巨高。

設計表時要註意的東西

  • 表欄位避免null值出現,null值很難查詢優化且占用額外的索引空間,推薦預設數字0代替null。

  • 儘量使用INT而非BIGINT,如果非負則加上UNSIGNED(這樣數值容量會擴大一倍),當然能使用TINYINT、SMALLINT、MEDIUM_INT更好。

  • 使用列舉或整數代替字串型別

  • 儘量使用TIMESTAMP而非DATETIME

  • 單表不要有太多欄位,建議在20以內

  • 用整型來存IP

索引

  • 索引並不是越多越好,要根據查詢有針對性的創建,考慮在WHERE和ORDER BY命令上涉及的列建立索引,可根據EXPLAIN來查看是否用了索引還是全表掃描

  • 應儘量避免在WHERE子句中對欄位進行NULL值判斷,否則將導致引擎放棄使用索引而進行全表掃描

  • 值分佈很稀少的欄位不適合建索引,例如”性別”這種只有兩三個值的欄位

  • 字符欄位只建前綴索引

  • 字符欄位最好不要做主鍵

  • 不用外鍵,由程式保證約束

  • 儘量不用UNIQUE,由程式保證約束

  • 使用多列索引時主意順序和查詢條件保持一致,同時刪除不必要的單列索引

簡言之就是使用合適的資料型別,選擇合適的索引

選擇合適的資料型別:

  1. 使用可存下資料的最小的資料型別,整型 < date,time < char,varchar < blob

  2. 使用簡單的資料型別,整型比字符處理開銷更小,因為字串的比較更複雜。如,int型別儲存時間型別,bigint型別轉ip函式

  3. 使用合理的欄位屬性長度,固定長度的表會更快。使用enum、char而不是varchar

  4. 盡可能使用not null定義欄位

  5. 儘量少用text,非用不可最好分表

選擇合適的索引列:

  • (1)查詢頻繁的列,在where,group by,order by,on從句中出現的列

  • (2)where條件中,>=,between,in,以及like 字串+通配符(%)出現的列

  • (3)長度小的列,索引欄位越小越好,因為資料庫的儲存單位是頁,一頁中能存下的資料越多越好

  • (4)離散度大(不同的值多)的列,放在聯合索引前面。查看離散度,通過統計不同的列值來實現,count越大,離散程度越高:

原開發人員已經跑路,該表早已建立,我無法修改,故:該措辭無法執行,放棄!

2、SQL的編寫需要註意優化

  • 使用limit對查詢結果的記錄進行限定

  • 避免select *,將需要查找的欄位列出來

  • 使用連接(join)來代替子查詢

  • 拆分大的delete或insert陳述句

  • 可通過開啟慢查詢日誌來找出較慢的SQL

  • 不做列運算:SELECT id WHERE age + 1 = 10,任何對列的操作都將導致表掃描,它包括資料庫教程函式、計算運算式等等,查詢時要盡可能將操作移至等號右邊

  • SQL陳述句盡可能簡單:一條SQL只能在一個cpu運算;大陳述句拆小陳述句,減少鎖時間;一條大SQL可以堵死整個庫

  • OR改寫成IN:OR的效率是n級別,IN的效率是log(n)級別,in的個數建議控制在200以內

  • 不用函式和觸發器,在應用程式實現

  • 避免%xxx式查詢

  • 少用JOIN

  • 使用同型別進行比較,比如用’123’和’123’比,123和123比

  • 儘量避免在WHERE子句中使用!=或<>運算子,否則將引擎放棄使用索引而進行全表掃描

  • 對於連續數值,使用BETWEEN不用IN:SELECT id FROM t WHERE num BETWEEN 1 AND 5

  • 串列資料不要拿全表,要使用LIMIT來分頁,每頁數量也不要太大

原開發人員已經跑路,程式已經完成上線,我無法修改SQL,故:該措辭無法執行,放棄!

3、引擎選擇

目前廣泛使用的是MyISAM和InnoDB兩種引擎:

MyISAM

MyISAM引擎是MySQL 5.1及之前版本的預設引擎,它的特點是:

  • 不支持行鎖,讀取時對需要讀到的所有表加鎖,寫入時則對錶加排它鎖

  • 不支持事務

  • 不支持外鍵

  • 不支持崩潰後的安全恢復

  • 在表有讀取查詢的同時,支持往表中插入新紀錄

  • 支持BLOB和TEXT的前500個字符索引,支持全文索引

  • 支持延遲更新索引,極大提升寫入性能

  • 對於不會進行修改的表,支持壓縮表,極大減少磁盤空間占用

InnoDB

InnoDB在MySQL 5.5後成為預設索引,它的特點是:

  • 支持行鎖,採用MVCC來支持高併發

  • 支持事務

  • 支持外鍵

  • 支持崩潰後的安全恢復

  • 不支持全文索引

總體來講,MyISAM適合SELECT密集型的表,而InnoDB適合INSERT和UPDATE密集型的表

MyISAM速度可能超快,占用儲存空間也小,但是程式要求事務支持,故InnoDB是必須的,故該方案無法執行,放棄!

4、分割槽

MySQL在5.1版引入的分割槽是一種簡單的水平拆分,用戶需要在建表的時候加上分割槽引數,對應用是透明的無需修改代碼

對用戶來說,分割槽表是一個獨立的邏輯表,但是底層由多個物理子表組成,實現分割槽的代碼實際上是通過對一組底層表的物件封裝,但對SQL層來說是一個完全封裝底層的黑盒子。MySQL實現分割槽的方式也意味著索引也是按照分割槽的子表定義,沒有全域性索引

用戶的SQL陳述句是需要針對分割槽表做優化,SQL條件中要帶上分割槽條件的列,從而使查詢定位到少量的分割槽上,否則就會掃描全部分割槽,可以通過EXPLAIN PARTITIONS來查看某條SQL陳述句會落在那些分割槽上,從而進行SQL優化,我測試,查詢時不帶分割槽條件的列,也會提高速度,故該措施值得一試。

分割槽的好處

  • 可以讓單表儲存更多的資料

  • 分割槽表的資料更容易維護,可以通過清楚整個分割槽批量刪除大量資料,也可以增加新的分割槽來支持新插入的資料。另外,還可以對一個獨立分割槽進行優化、檢查、修複等操作

  • 部分查詢能夠從查詢條件確定只落在少數分割槽上,速度會很快

  • 分割槽表的資料還可以分佈在不同的物理設備上,從而搞笑利用多個硬體設備

  • 可以使用分割槽表賴避免某些特殊瓶頸,例如InnoDB單個索引的互斥訪問、ext3檔案系統的inode鎖競爭

  • 可以備份和恢復單個分割槽

分割槽的限制和缺點

  • 一個表最多只能有1024個分割槽

  • 如果分割槽欄位中有主鍵或者唯一索引的列,那麼所有主鍵列和唯一索引列都必須包含進來

  • 分割槽表無法使用外鍵約束

  • NULL值會使分割槽過濾無效

  • 所有分割槽必須使用相同的儲存引擎

分割槽的型別

  • RANGE分割槽:基於屬於一個給定連續區間的列值,把多行分配給分割槽

  • LIST分割槽:類似於按RANGE分割槽,區別在於LIST分割槽是基於列值匹配一個離散值集合中的某個值來進行選擇

  • HASH分割槽:基於用戶定義的運算式的傳回值來進行選擇的分割槽,該運算式使用將要插入到表中的這些行的列值進行計算。這個函式可以包含MySQL中有效的、產生非負整數值的任何運算式

  • KEY分割槽:類似於按HASH分割槽,區別在於KEY分割槽只支持計算一列或多列,且MySQL服務器提供其自身的哈希函式。必須有一列或多列包含整數值

具體關於MySQL分割槽的概念請自行google或查詢官方文件,我這裡只是拋磚引玉了。

我首先根據月份把上網記錄表RANGE分割槽了12份,查詢效率提高6倍左右,效果不明顯,故:換id為HASH分割槽,分了64個分割槽,查詢速度提升顯著。問題解決!
結果如下:PARTITION BY HASH (id)PARTITIONS 64

select count(*) from readroom_website; --11901336行記錄
/* 受影響行數: 0  已找到記錄: 1  警告: 0  持續時間 1 查詢: 5.734 sec. */   
select * from readroom_website where month(accesstime) =11 limit 10;
/* 受影響行數: 0  已找到記錄: 10  警告: 0  持續時間 1 查詢: 0.719 sec. */

5、分表

分表就是把一張大表,按照如上過程都優化了,還是查詢卡死,那就把這個表分成多張表,把一次查詢分成多次查詢,然後把結果組合傳回給用戶。

分表分為垂直拆分和水平拆分,通常以某個欄位做拆分項。比如以id欄位拆分為100張表: 表名為 tableName_id%100

但:分表需要修改源程式代碼,會給開髮帶來大量工作,極大的增加了開發成本,故:只適合在開發初期就考慮到了大量資料存在,做好了分表處理,不適合應用上線了再做修改,成本太高!!!而且選擇這個方案,都不如選擇我提供的第二第三個方案的成本低!故不建議採用。

6、分庫

把一個資料庫分成多個,建議做個讀寫分離就行了,真正的做分庫也會帶來大量的開發成本,得不償失!不推薦使用。

方案二詳細說明:升級資料庫,換一個100%兼容MySQL的資料庫

MySQL性能不行,那就換個。為保證源程式代碼不修改,保證現有業務平穩遷移,故需要換一個100%兼容MySQL的資料庫。

1、開源選擇

  • tiDB pingcap/tidb

  • Cubrid Open Source Database With Enterprise Features

開源資料庫會帶來大量的運維成本且其工業品質和MySQL尚有差距,有很多坑要踩,如果你公司要求必須自建資料庫,那麼選擇該型別產品。

2、雲資料選擇

  • 阿裡雲POLARDB

官方介紹語:POLARDB 是阿裡雲自研的下一代關係型分佈式雲原生資料庫,100%兼容MySQL,儲存容量最高可達 100T,性能最高提升至 MySQL 的 6 倍。POLARDB 既融合了商業資料庫穩定、可靠、高性能的特征,又具有開源資料庫簡單、可擴展、持續迭代的優勢,而成本只需商用資料庫的 1/10。

我開通測試了一下,支持免費MySQL的資料遷移,無操作成本,性能提升在10倍左右,價格跟rds相差不多,是個很好的備選解決方案!

  • 阿裡雲OcenanBase

淘寶使用的,扛得住雙十一,性能卓著,但是在公測中,我無法嘗試,但值得期待

  • 阿裡雲HybridDB for MySQL (原PetaData)

官方介紹:雲資料庫HybridDB for MySQL (原名PetaData)是同時支持海量資料在線事務(OLTP)和在線分析(OLAP)的HTAP(Hybrid Transaction/Analytical Processing)關係型資料庫。

我也測試了一下,是一個olap和oltp兼容的解決方案,但是價格太高,每小時高達10塊錢,用來做儲存太浪費了,適合儲存和分析一起用的業務。

  • 騰訊雲DCDB

官方介紹:DCDB又名TDSQL,一種兼容MySQL協議和語法,支持自動水平拆分的高性能分佈式資料庫——即業務顯示為完整的邏輯表,資料卻均勻的拆分到多個分片中;每個分片預設採用主備架構,提供災備、恢復、監控、不停機擴容等全套解決方案,適用於TB或PB級的海量資料場景。

騰訊的我不喜歡用,不多說。原因是出了問題找不到人,線上問題無法解決頭疼!但是他價格便宜,適合超小公司,玩玩。

方案三詳細說明:去掉MySQL,換大資料引擎處理資料

資料量過億了,沒得選了,只能上大資料了。

1、開源解決方案

hadoop家族。hbase/hive懟上就是了。但是有很高的運維成本,一般公司是玩不起的,沒十萬投入是不會有很好的產出的!

2、雲解決方案

這個就比較多了,也是一種未來趨勢,大資料由專業的公司提供專業的服務,小公司或個人購買服務,大資料就像水/電等公共設施一樣,存在於社會的方方面面。

國內做的最好的當屬阿裡雲。

我選擇了阿裡雲的MaxCompute配合DataWorks,使用超級舒服,按量付費,成本極低。

MaxCompute可以理解為開源的Hive,提供SQL/mapreduce/ai演算法/python腳本/shell腳本等方式運算元據,資料以表格的形式展現,以分佈式方式儲存,採用定時任務和批處理的方式處理資料。DataWorks提供了一種工作流的方式管理你的資料處理任務和調度監控。

當然你也可以選擇阿裡雲hbase等其他產品,我這裡主要是離線處理,故選擇MaxCompute,基本都是圖形界面操作,大概寫了300行SQL,費用不超過100塊錢就解決了資料處理問題。


已同步到看一看
赞(0)

分享創造快樂