歡迎光臨
每天分享高質量文章

最火的機器學習開源專案Top10(附專案地址)

導讀:Mybrige AI 測評了多達 250 個開源專案並比較了這些專案的最新和主力版本,根據多種指標進行排名,給大家找出最乾貨的專案Top10。

  • 入榜專案Github平均得星:1,239 ⭐️

  • 涵蓋話題:DensePose,圖像分類,多尺度訓練,移動AI計算引擎,衛星圖像,NLP,Python包,字檢測,NCRF,DALI

希望以下開源專案能助你興趣發揚、靈感激蕩。

作者:Mybrige AI

譯者:佑銘

來源:優達學城Udacity(ID:youdaxue)

01 DensePose: Facebook帶你突破次元壁!

⭐️Github得星:3183

Facebook AI Research(FAIR)於今年6月18號開源了將2D RGB圖像的所有人類像素映射到身體的3D錶面模型的實時方法DensePose,這意味著二次元的人類圖片可以被轉化成三次元模型!

有什麼用呢?比如網購的時候傳一張自己的照片就可以直接試衣服而且效果感人,比如在手機上有如在練功房一樣學跳舞……DensePose在單個GPU上以每秒多幀的速度運行,可以同時處理數十甚至數百個人。

專案地址:

https://github.com/facebookresearch/DensePose

02 Darts: 指數級加速架構搜索

⭐️Github得星:1333

卡耐基梅隆大學(CMU)在讀博士劉寒驍、DeepMind 研究員 Karen Simonyan 以及 CMU 教授楊一鳴提出的「可微架構搜索」DARTS(Differentiable Architecture Search)方法基於連續搜索空間的梯度下降,可讓計算機更高效地搜索神經網絡架構。

據論文所述,DARTS在發現高性能的圖像分類捲積架構和語言建模迴圈架構中皆表現優異,而且速度比之前最優的不可微方法快了幾個數量級,所用 GPU 算力有時甚至僅為此前搜索方法的 700 分之 1,這意味著單塊 GPU 也可以完成任務。

論文鏈接:

https://arxiv.org/abs/1806.09055

專案地址:

https://github.com/quark0/darts

03 SNIPER:高效的多尺度物體檢測演算法

⭐️Github得星:1550

SNIPER是一種有效的多尺度訓練方法,用於實體級識別任務,如物件檢測和實體級分割。 SNIPER不是處理圖像金字塔中的所有像素,而是選擇性地處理地面實況物件周圍的背景關係區域(a.k.a芯片)。由於它在低解析度芯片上運行,因此顯著加速了多尺度訓練。由於其記憶體高效設計,SNIPER可以在訓練期間受益於批量標準化,並且可以在單個GPU上實現更大批量大小的實體級識別任務。

專案地址:

https://github.com/mahyarnajibi/SNIPER

04 Mace: 米家移動端深度學習前向預測框架

⭐️Github得星:2337

Mobile AI Compute Engine (MACE) 是一個專為移動端異構計算設備優化的深度學習前向預測框架。 MACE改寫了常見的移動端計算設備(CPU,GPU和DSP),並且提供了完整的工具鏈和文件,用戶借助MACE能夠 很方便地在移動端部署深度學習模型。MACE已經在小米內部廣泛使用並且被充分驗證具有業界領先的性能和穩定性。

專案地址:

https://github.com/XiaoMi/mace

05 Robosat: 航空和衛星圖像的語意分割

⭐️Github得星:893

RoboSat是一個用Python 3編寫的端到端管道,用於從航空和衛星圖像中提取特征。 特征可以是圖像中視覺上可區分的任何內容,例如:建築物,停車場,道路或汽車。

專案地址:

https://github.com/mapbox/robosat

06 decaNLP:自然語言處理十項全能

⭐️Github得星:1213

這是一個能同時處理回答問題、機器翻譯、文本綜述、自然語言推理、語意分析、語意標註、零樣本關係提取、面向標的的對話、語意解析和常識名詞解析十項自然語言任務的通用模型,由Salesforce發佈,號稱是NLP領域的瑞士軍刀。

專案地址:

https://github.com/salesforce/decaNLP

07 Magnitude:快速簡單的向量嵌入物體庫

⭐️Github得星:477

功能豐富的Python包和矢量儲存檔案格式,用於在Plasticity開發的快速、高效、簡單的方式中將矢量嵌入用於機器學習模型。 它主要是為Gensim提供更簡單/更快速的替代方案,但可以用作NLP之外的域的通用密鑰向量儲存。

專案地址:

https://github.com/plasticityai/magnitude

08 Porcupine:基於設備的語言喚醒檢測引擎

⭐️Github得星:526

Porcupine是一款自助式,高精度,輕量級的喚醒字檢測引擎。它使開發人員搭建具有語言功能、始終處於聆聽狀態的應用或平臺。開發人員有權在幾秒鐘內選擇任何喚醒詞並構建其模型。使用在真實情況下訓練的深度神經網絡(即噪聲和混響)。

緊湊且計算效率高,使其適用於物聯網應用。跨平臺。它以純定點ANSI C實現。目前支持Raspberry Pi,Android,iOS,watchOS,Linux,Mac和Windows。具備可擴展性。它可以同時檢測數十個喚醒字,幾乎沒有額外的記憶體占用。

專案地址:

https://github.com/Picovoice/Porcupine

09 NCRF: 百度利用神經條件隨機場檢測癌症轉移

⭐️Github得星:358

百度研究人員提出一種神經條件隨機場(neural conditional random field,NCRF)深度學習框架,來檢測 WSI 中的癌細胞轉移,在提升腫瘤圖像準確率的同時也減少了假陽性的出現幾率。

NCRF 通過一個直接位於 CNN 特征提取器上方的全連接 CRF,來考慮相鄰圖像塊之間的空間關聯。整個深度網絡可以使用標準反向傳播演算法,以最小算力進行端到端的訓練。CNN 特征提取器也可以從利用 CRF 考慮空間關聯中受益。與不考慮空間關聯的基線方法相比,NCRF 框架可獲取更高視覺質量的圖像塊預測概率圖。

專案地址:

https://github.com/baidu-research/NCRF

10 DALI:NVIDIA快速圖像增強的簡便大法

⭐️Github得星:514

NVIDIA DALI是一個GPU加速的資料增強和圖像加載庫,為優化深度學習框架資料pipeline而設計,DALI 提供加速不同資料管道的性能和靈活性,作為一個單獨的庫,可以輕鬆集成到不同的深度學習訓練和推理應用程式中。

DALI 的主要亮點包括:

  • 從磁盤讀取到準備訓練/推斷的完整的資料流水線;

  • 具有可配置圖形和自定義operator的自定義資料pipeline;

  • 支持圖像分類和分割工作量;

  • 通過框架插件和開源系結輕鬆實現集成(MxNet、TensorFlow、PyTorch等);

  • 具有多種輸入格式的可移植訓練工作流 – JPEG,LMDB,RecordIO,TFRecord;

專案地址:

https://github.com/NVIDIA/DALI

更多精彩


在公眾號後臺對話框輸入以下關鍵詞

查看更多優質內容!


PPT | 報告 | 讀書 | 書單 | 乾貨

Python | 機器學習 | 深度學習 | 神經網絡

區塊鏈 | 揭秘 | 高考 | 福利

猜你想看

Q: 你有興趣參與一下嗎

歡迎留言與大家分享

覺得不錯,請把這篇文章分享給你的朋友

轉載 / 投稿請聯繫:baiyu@hzbook.com

更多精彩,請在後臺點擊“歷史文章”查看

赞(0)

分享創造快樂