歡迎光臨
每天分享高質量文章

本周有哪些值得讀的論文?15篇良心推薦瞭解一下

在碎片化閱讀充斥眼球的時代,越來越少的人會去關註每篇論文背後的探索和思考。

在這個欄目里,你會快速 get 每篇精選論文的亮點和痛點,時刻緊跟 AI 前沿成果。


點擊本文底部的「閱讀原文」即刻加入社區,查看更多最新論文推薦。

這是 PaperDaily 的第 102 篇文章

Learning Sentiment Memories for Sentiment Modification without Parallel Data

@tobiaslee 推薦

#Sentiment Modification

本文是北京大學發表於 EMNLP 2018 的工作,論文解決了一個非常有趣的問題——Sentiment Modification,將某種情感極性的文本轉化成另外一種極性,比如將“這家店的服務很不錯”(正向)變為“這家店的服務很差”(負向)。

通過使用 attention weight 作為指示來去除情感詞得到 neutralized context,隨後根據情感詞構建 sentiment memory,並通過該 memory 對 Seq2Seq 中 decoder 的 initial state 進行初始化,幫助其生成另外一種極性的文本。

 論文模型:點擊查看大圖


論文鏈接

https://www.paperweekly.site/papers/2263

原始碼鏈接

https://github.com/lancopku/SMAE


Learning to Ask Questions in Open-domain Conversational Systems with Typed Decoders

@filterc 推薦

#Question Generation

本文是清華大學黃民烈老師團隊發表於 ACL 2018 的工作。深度學習對話模型存在的問題:語意理解問題、背景關係理解問題、個性身份一致性問題。通過向用戶提問,可以更好將對話進行下去,而提出一個好問題,也體現機器對人語言的理解。一個好的問題包括:interrogative(詢問詞),topic word(主題詞)和 ordinary word(普通詞)。 

本文基於 encoder-decoder 的框架,提出兩種 decoders(STD 和 HTD),來估計生成出的句子中每個位置上的詞是以上三種型別的分佈。作者爬取微博 900w 對話資料,做了兩個處理共得到 49w 對。用 20 個人工模板篩選了提問式的回覆,過濾了通用的回覆如“是嗎”、“真的嗎”。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2221

原始碼鏈接

https://github.com/victorywys/Learning2Ask_TypedDecoder


Learning Context-Sensitive Convolutional Filters for Text Processing

@vertigo 推薦

#Sentence Matching

本文是杜克大學發表於 EMNLP 2018 的工作。基於 hypernetworks 的思想,作者提出了用 Meta Network 來生成 CNN 模型的引數,並通過這種方式將 context 的信息引入到模型當中Meta Network 的輸入可以是句子本身或者另外的文本)。作者將這個 context-sensitive 的框架運用到文件分類和句子匹配等多種問題上,獲得了明顯的提升。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2260



Toward Convolutional Blind Denoising of Real Photographs

@paperweekly 推薦

#Image Denoising

本文來自哈工大和香港理工大學,主要研究捲積網絡在真實圖像上的去噪效果。論文提出了一個更加真實的噪聲模型,充分考慮了信號依賴噪聲和 ISP 流程對噪聲的影響,證明瞭圖像噪聲模型在真實噪聲圖像中起著關鍵作用。其次,論文提出了可實現圖像盲去噪的 CBDNet 模型,該模型包含一個噪聲估計子網絡和一個非盲去噪子網絡。

此外,作者還提出了非對稱學習(asymmetric learning)的損失函式,允許用戶交互式調整去噪結果以增強去噪結果的魯棒性。作者將合成噪聲圖像與真實噪聲圖像一起用於網絡的訓練,提升網絡的去噪效果和泛化能力。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2294


原始碼鏈接

https://github.com/GuoShi28/CBDNet

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

@paperweekly 推薦

#3D Reconstruction

本文是復旦大學、普林斯頓大學、Intel Labs 和騰訊 AI Lab 合作發表於 ECCV 2018 的工作。文章提出了一種端到端的深度學習框架,可從單張彩色圖片直接生成三維網格(3D Mesh)。與現有方法不同,本文使用圖捲積神經網絡表示 3D mesh,利用從輸入圖像中提取的特征逐步對橢球進行變形從而產生正確的幾何形狀。本文使用由粗到精的樣式進行生成,使得整個變形過程更加穩定。

論文詳細解讀:ECCV 2018 | Pixel2Mesh:從單幀RGB圖像生成三維網格模型

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2283


原始碼鏈接

https://github.com/nywang16/Pixel2Mesh



A review on deep learning for recommender systems: challenges and remedies

@somtian 推薦

#Recommender Systems

本文是最新發表的一篇利用深度學習做推薦系統的綜述,不僅從深度學習模型方面對文獻進行了分類,而且從推薦系統研究的問題方面對文獻做了分類。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2271

Multi-Source Domain Adaptation with Mixture of Experts

@zhangjun 推薦

#Domain Adaptation

本文是麻省理工發表於 EMNLP 2018 的工作,論文提出了一種多源遷移學習的無監督訓練方法,通過將所有 source 分為 meta-source 和 meta-target 自動構建訓練資料集,顯式地學習每個 source set 和 target example 之間的匹配度,不同的匹配度將決定 source 對 target 的重要程度。本文方法可以很好地避免 negative transfer,文中實驗成功地將 twitter source 匹配度降到最低。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2284

Graph Edit Distance Computation via Graph Neural Networks

@xuehansheng 推薦

#Network Embedding

本文針對現有的網絡圖相似度計算方法 GED/MCS 的時間複雜度較高的缺陷,提出了一種基於神經網絡的全新的網絡圖相似度計算方法,在保證準確率的同時提高計算效率。本文的主要貢獻在於首次將神經網絡取用到圖計算中,為圖相似度計算提供了一個全新的研究方向。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2257

SGM: Sequence Generation Model for Multi-label Classification

@lxylxyoo 推薦

#Text Classification

本文是北京大學發表於 COLING 2018 的工作,論文用序列生成的方式進行多標簽分類,引入了標簽之間的相關性。

 論文模型:點擊查看大圖


論文鏈接

https://www.paperweekly.site/papers/2270


原始碼鏈接

https://github.com/lancopku/SGM

Looking Beyond the Surface: A Challenge Set for Reading Comprehension over Multiple Sentences

@guohao916 推薦

#Machine Reading Comprehension

本文發佈了一個基於多陳述句的機器閱讀理解資料集,與以往常見的機器閱讀理解資料集不同,該資料集具有以下特點: 

1. 資料集中答案以多選的形式出現,一個問題對應多個答案,不局限於一個答案;

2. 對於問題的解釋來自於篇章中的多條陳述句,而不是僅局限於一條陳述句;

3. 資料集來源於 7 個不同的領域(話題),從而增強了篇章內容話題的多樣性。 

針對該問題和資料集,作者設計了一系列基於多個基準演算法的實驗。基準演算法包括:Random, IR, SurfaceIR, SemanticILP, BiDAF。文章定義了問題被回答的準確率,召回率和 F1 並設定為度量指標。實驗結果表明不論是在驗證集還是在測試集上,表現最好的基準演算法 SurfaceIR 得到的 F1 指標,相比較於人工判斷得到的結果相差接近 20 個百分點。因此模型上還存在著很大的改進和提升空間。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2256

原始碼鏈接

https://github.com/CogComp/multirc

Video Re-localization

@paperweekly 推薦

#Video Re-localization

本文是騰訊 AI Lab 和美國羅切斯特大學合作發表於 ECCV 2018 的工作,研究目的是在給定一個欲搜索的視頻後,在某個備選視頻中快速找到與搜索視頻語意相關的片段,這在視頻處理研究領域仍屬空白。因此本文定義了一個新任務——視頻再定位(Video Re-localization),重組 ActivityNet 資料集視頻,生成了一個符合研究需求的新資料集,並提出一種交叉過濾的雙線性匹配模型,實驗已證明瞭其有效性。

論文詳細解讀:ECCV 2018 | 騰訊AI Lab提出視頻再定位任務,準確定位相關視頻內容

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2272


原始碼鏈接

https://github.com/fengyang0317/video_reloc

Dual Attention Network for Scene Segmentation

@paperweekly 推薦

#Scene Segmentation

本文來自中科院自動化所。場景分割是語意分割領域中重要且具有挑戰的方向,為了有效完成場景分割任務,需要區分一些容易混淆的類別,並考慮不同外觀的物體。本文提出了一個新的自然場景圖像分割框架,稱為雙重註意力網絡(DANet),引入了一種自註意力機制來分別捕捉空間維度和通道維度上的視覺特征關聯。

在處理複雜多樣的場景時,本文提出的方法比以往的方法更為靈活、有效,在三個具有挑戰性的場景分割資料集(Cityscapes、PASCAL Context 和 COCO Stuff)上取得了當前最佳分割性能。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2295


原始碼鏈接

https://github.com/junfu1115/DANet

Real-time Personalization using Embeddings for Search Ranking at Airbnb

@Minusone 推薦

#Recommender System

本文是 Airbnb 團隊發表於 KDD 18 的工作,摘得 Applied Data Science Track Best Paper 獎項。論文介紹了 Airbnb 利用 word embedding 的思路訓練 Listing(也就是待選擇的民宿房間)和用戶的 embedding 向量,併在此基礎上實現相似房源推薦和實時個性化搜索。

sdfd

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2264

Searching Toward Pareto-Optimal Device-Aware Neural Architectures

@zhangjun 推薦

#Neural Architecture Search

本文來自 Google Research 和國立清華大學。大多數 NAS 的工作都針對優化結果在 test dataset 上的準確性,而忽略了在一些硬體設備(比如:手機)上的模型還應考慮延遲和功耗,由此可將單標的優化問題轉換成一個多標的優化問題。本文深入分析了兩種常見的多標的 NAS 模型 MONAS 和 DPP-Net,併在一些設備上進行了實驗對比。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2259

Explainable Recommendation: A Survey and New Perspectives

@Molly 推薦

#Recommender System

本文是對“可解釋性推薦系統”相關以及最新研究的調研總結,內容包括問題定義、問題歷史、解決方案、相關應用和未來方向。論文內容較為全面,對於剛接觸這一方向或者已經從事搭配領域的業者學者有很好的借鑒意義,文章最後對於一些可以發展的方向的論述也很有啟發意義。

 論文模型:點擊查看大圖

論文鏈接

https://www.paperweekly.site/papers/2276

#推 薦 有 禮#


本期所有入選論文的推薦人

均將獲得PaperWeekly紀念周邊一份


▲ 深度學習主題行李牌/卡套 + 防水貼紙

 禮物領取方式 


推薦人請根據論文詳情頁底部留言

添加小助手領取禮物


想要贏取以上周邊好禮?

點擊閱讀原文即刻推薦論文吧!

點擊以下標題查看往期推薦: 


#投 稿 通 道#

 讓你的論文被更多人看到 


如何才能讓更多的優質內容以更短路徑到達讀者群體,縮短讀者尋找優質內容的成本呢? 答案就是:你不認識的人。


總有一些你不認識的人,知道你想知道的東西。PaperWeekly 或許可以成為一座橋梁,促使不同背景、不同方向的學者和學術靈感相互碰撞,迸發出更多的可能性。 


PaperWeekly 鼓勵高校實驗室或個人,在我們的平臺上分享各類優質內容,可以是最新論文解讀,也可以是學習心得技術乾貨。我們的目的只有一個,讓知識真正流動起來。

來稿標準:

• 稿件確系個人原創作品,來稿需註明作者個人信息(姓名+學校/工作單位+學歷/職位+研究方向) 

• 如果文章並非首發,請在投稿時提醒並附上所有已發佈鏈接 

• PaperWeekly 預設每篇文章都是首發,均會添加“原創”標誌


? 投稿郵箱:

• 投稿郵箱:[email protected]aperweekly.site 

• 所有文章配圖,請單獨在附件中發送 

• 請留下即時聯繫方式(微信或手機),以便我們在編輯發佈時和作者溝通



?


現在,在「知乎」也能找到我們了

進入知乎首頁搜索「PaperWeekly」

點擊「關註」訂閱我們的專欄吧

關於PaperWeekly


PaperWeekly 是一個推薦、解讀、討論、報道人工智慧前沿論文成果的學術平臺。如果你研究或從事 AI 領域,歡迎在公眾號後臺點擊「交流群」,小助手將把你帶入 PaperWeekly 的交流群里。

▽ 點擊 | 閱讀原文 | 獲取更多論文推薦

赞(0)

分享創造快樂